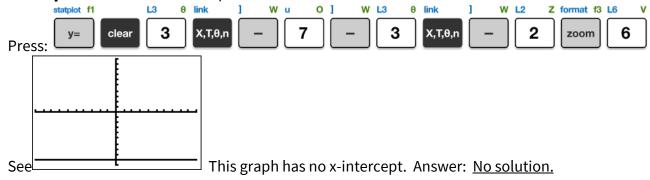
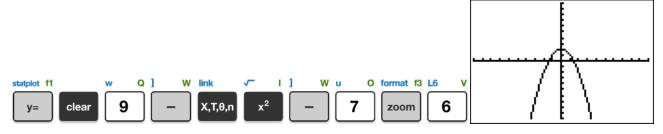
Solving Equations Using x-Intercept Method -2 classic View


Objectives:

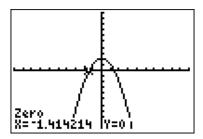
Use the Zero calculation to find solutions in more difficult situations

Use the Zero calculation to find solutions in more difficult situations

PRO TIP: If the graph does not cross the x-axis, there is no solution. One way this can happen is if the graph is a horizontal line (other than the x-axis).

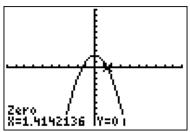

Example 1: Use the x-intercept of difference method to find the solution of 3x - 7 = 3x + 2

IMPORTANT: If there are two (or more) points of intersection, use the same method twice (or more): once for each solution. You must choose the "Guess?" more carefully when there is more than one.


Example 2: Use the x-intercept of difference method to find the solution of $9 - x^2 = 7$. Round to the nearest hundredth.

Set equal to zero: $9 - x^2 - 7 = 0$. Graph $y_1 = 9 - x^2 - 7$.

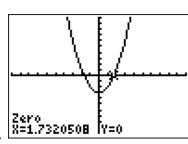
Notice two x-intercepts, and use zero twice.

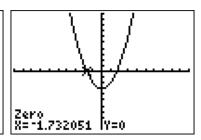

about 10 times,

about 5 times,

enter

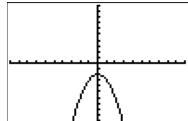
Answers: $x \approx 1.41, -1.41$


Try It!


Solve each equation graphically using the x-intercept method. Round to the nearest hundredth if needed.

1)
$$5 + x^2 = 8$$

2)
$$5-x^2=7$$


Solutions

1) $5-8+x^2=0$ $y_1=-3+x^2$ calculate twice. $\frac{2ero}{x=1.7320508}$

Answer: $x \approx 1.73, -1.73$

2) $5-x^2=7$ $5-7-x^2=0$ $y_1=-2-x^2$

Answer: no solution

Graph has no x-intercepts.